
The ground state of an S = 1/2 distorted diamond chain - a model of

Cu3Cl6(H2O)2·2H8C4SO2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 10485

(http://iopscience.iop.org/0953-8984/11/50/336)

Download details:

IP Address: 171.66.16.218

The article was downloaded on 15/05/2010 at 19:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/50
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 10485–10498. Printed in the UK PII: S0953-8984(99)06479-6

The ground state of anS = 1/2 distorted diamond
chain—a model of Cu3Cl6(H2O)2·2H8C4SO2

Kiyomi Okamoto†, Taskashi Tonegawa‡, Yutaka Takahashi§ and
Makoto Kaburagi‖
† Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo
152-8551, Japan
‡ Department of Physics, Faculty of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
§ Division of Physics, Graduate School of Science and Technology, Kobe University, Rokkodai,
Kobe 657-8501, Japan
‖ Department of Informatics, Faculty of Cross-Cultural Studies, Kobe University, Tsurukabuto,
Kobe 657-8501, Japan

Received 30 July 1999, in final form 30 September 1999

Abstract. We study the ground state of the model Hamiltonian of the trimerizedS = 1/2 quantum
Heisenberg chain Cu3Cl6(H2O)2·2H8C4SO2 in which a non-magnetic ground state was observed
recently. This model consists of stacked trimers and has three kinds of coupling constant describing
the couplings between spins: the intra-trimer coupling constantJ1 and the inter-trimer coupling
constantsJ2 andJ3. All of these constants are assumed to be antiferromagnetic. By use of an
analytical method and physical considerations, we show that there are three phases on theJ̃2–J̃3
plane(J̃2 ≡ J2/J1, J̃3 ≡ J3/J1): the dimer phase, the spin-fluid phase and the ferrimagnetic phase.
The dimer phase is caused by the frustration effect. In the dimer phase, there exists an excitation
gap between the twofold-degenerate ground state and the first excited state, which explains the non-
magnetic ground state observed in Cu3Cl6(H2O)2·2H8C4SO2. We also obtain the phase diagram
on theJ̃2–J̃3 plane from the numerical diagonalization data for finite systems by use of the Lanczos
algorithm.

1. Introduction

In recent years low-dimensional quantum spin systems have attracted a great deal of attention.
Very recently, Ishiiet al [1] have experimentally studied a trimerized quantum spin chain
Cu3Cl6(H2O)2·2H8C4SO2. They have measured the temperature dependence of the spin
susceptibility, and the magnetization curve at low temperatures. Their results show that the
magnetic susceptibilityχ behaves asχ → 0 atT → 0 and there exists a critical magnetic
field where the magnetization rises up from zero. Thus they have concluded that the ground
state of this substance is non-magnetic. From the result of a structure-analysis experiment [2],
the chain is known to be composed of stackedS = 1/2 Cu2+ trimers and separated from other
chains by large molecules, H8C4SO2. Therefore this substance is thought to be well modelled
by independent chains of stacked trimers and Ishiiet al have proposed the model shown in
figure 1 [1].

In this paper we call this model the ‘distorted diamond (DD) chain model’. The
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Figure 1. A sketch of the model of Cu3Cl6(H2O)2·2H8C4SO2. Solid lines denote the intra-trimer
couplingJ1, wavy lines the inter-trimer couplingJ2 and dotted lines the inter-trimer couplingJ3.

Hamiltonian of this model is written as

H = J1

∑
j

(S3j−1 · S3j + S3j · S3j+1) + J2

∑
j

S3j+1 · S3j+2

+ J3

∑
j

(S3j−2 · S3j + S3j · S3j+2) (1)

where three spinsS3j−1, S3j and S3j+1 form a trimer. All the coupling constants are
supposed to be positive (antiferromagnetic). Although it is thought thatJ1 > J2, J3 in
Cu3Cl6(H2O)2·2H8C4SO2 because of its structure, we do not restrict ourselves to this case.
Hereafter we takeJ1 as the energy unit and setJ̃2 ≡ J2/J1 andJ̃3 ≡ J3/J1. We note that the
point (J̃2, J̃3) is equivalent to the point(J̃2/J̃3, 1/J̃3) on interchanging the roles ofJ1 andJ3.

If we transform the Hamiltonian (1) into the fermion representation through the Jordan–
Wigner transformation, we can see that the fermionic band gap exists atM = Ms/3 but not at
M = 0, whereMs is the saturation magnetization [3,4]. Thus the trimerization itself cannot be
the direct reason for the non-magnetic ground state. This can also be explained by considering
the necessary condition for the appearance of magnetization plateau proposed by Oshikawa,
Yamanaka and Affleck [5],

n(S − 〈m〉) = integer (2)

wheren is the periodicity of the ground-state wave function,S the magnitude of the spins and
〈m〉 the average magnetization per spin in the plateau. The periodicity of the Hamiltonian (1)
itself is 3. We see thatn = 3 does not satisfy condition (2) withS = 1/2 and〈m〉 = 0. Then,
if the present model is applicable to Cu3Cl6(H2O)2·2H8C4SO2, its ground-state wave function
should have periodicity with at leastn = 6 due to the spontaneous symmetry breaking. In this
paper, we explain why the non-magnetic ground state is realized and derive the ground-state
phase diagram on thẽJ2–J̃3 plane.

TheJ1 = J3 case of the present model was named the ‘diamond chain’ and investigated by
Takano, Kubo and Sakamoto (TKS) [6]. They concluded that the ground state of the diamond
chain is composed of three phases: the ferrimagnetic phase (M = Ms/3) for J̃2 < 0.909, the
tetramer–dimer phase for 0.909 < J̃2 < 2 and the dimer–monomer phase forJ̃2 > 2. The
relation between the present model and TKS’s model will be discussed later.

This paper is organized as follows. In section 2, we explain the mechanism for the non-
magnetic ground state by use of an analytical method and physical consideration. In section 3,
we obtain the phase diagram from the numerical data for the diagonalization of the Hamil-
tonian (1) for finite systems by use of the Lanczos algorithm. The last section is devoted to
discussion.
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2. Analytical and physical approach

We consider three special cases at first. WhenJ̃2 = 1 andJ̃3 = 0, the present model is reduced
to the simpleS = 1/2 chain with nearest-neighbour interactions, the ground state of which
is the spin-fluid (SF) state, as is well known. In the case ofJ̃2 = 0, the ground state may be
ferrimagnetic (M = Ms/3), because the state withS3j = ↓ andS3j±1 = ↑ is the classical
ground state. At the point̃J2 = J̃3 = 0, the chain is truncated into an array of independent
trimers.

Next, let us consider thẽJ2 = 1 case. If we re-draw the model in the single-chain form
as in figure 2, we see this is closely related to the next-nearest-neighbour (NNN) interaction
model in figure 3. In fact, the model of figure 2 is obtained from that of figure 3 by removing
one NNN interaction of every three NNN interactions. The important point is that every spin
feels the frustration.

J1

J3

Figure 2. The present model in thẽJ2 = 1 case in the linear chain form.

J1

JNNN

Figure 3. The next-nearest-neighbour (NNN) interaction model.

The NNN interaction model is one of the most important models having frustration and
is extensively studied [7–15]. WheñJNNN ≡ JNNN/J1 = 0.5, the ground state of the NNN
interaction model is an array of independent singlet dimers, where the translational symmetry
under translation by one spin spacing is spontaneously broken [7,8]. Then there should exist
a critical point of the ground-state phase transition between the spin-fluid (SF) state and the
dimer state. Okamoto and Nomura [12] numerically determined this SF–dimer critical point,
J̃

(cr)
NNN = 0.2411.

Since the model of figure 2 is very similar to that of figure 3, as stated, the SF–dimer
transition may occur also in the model of figure 2 whenJ̃2 is increased. This can be confirmed
by the bosonization technique in the following way. The effective Hamilton of the model of
figure 3 in the continuum limit is written as [9,11,12,14,15]

H = 1

2π

∫
dx

[
vsK(π5)2 +

vs

K

(
∂φ

∂x

)2
]

+
yφvs

2π

∫
dx cos

√
2φ (3)

wherevs is the spin-wave velocity andK the quantum parameter which governs the algebraic
decay of the spin-correlation functions:

〈Sz
0S

z
r 〉 ∼ r−K 〈S+

0S−
r 〉 ∼ r−1/K (4)
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in the SF state. Due to the isotropic nature of our model, the renormalized value ofK should
beK = 1. The variablesφ(x) and5(x) are mutually conjugate:

[φ(x), 5(x ′)] = iδ(x − x ′). (5)

The coefficient of the cosine term,yφ in equation (3), is

yφ ∝ 1 − 3J̃NNN (6)

where1 is theXXZ anisotropy defined byJ z/J⊥ which is equal to unity in our isotropic
model. For the model of figure 2, we can obtain the effective Hamiltonian of the same form
as (3), but with

yφ ∝ 1 − 2J̃3. (7)

We note that the expressions (6) and (7) are valid only in the lowest order of1, J̃NNN and
J̃3. Since we take the continuum limit in the course of deriving the effective Hamiltonian,
the difference between the two models appears as the difference in the expression ofyφ . We
note that the spin-wave velocitiesvs are slightly different in the two models, but this does not
bring about any major effect. Thus we can conclude that the model of figure 2 also shows the
SF–dimer phase transition. Since 3J̃NNN in equation (6) is replaced by 2̃J3 in equation (7), the
critical valueJ̃

(cr)
3 is naively obtained by letting 3̃J (cr)

NNN = 2J̃
(cr)
3 , which leads toJ̃ (cr)

3 ' 0.36
on usingJ̃ (cr)

NNN = 0.2411. In fact, as shown in section 4, the numerical result isJ̃
(cr)
3 ' 0.354.

The dimer ground-state wave function in the model of figure 2 is twofold degenerate with
periodicityn = 6 and is shown in figure 4.

Figure 4. Dimer configurations in the ground state of the DD chain model withJ̃2 = 1 in the
single-chain form. Two spins in an ellipse form a singlet dimer pair.

WhenJ̃2 6= 1, we have to include the trimerization effects in the effective Hamiltonian.
However, in theM = 0 subspace, the trimerization does not lead to a mass-generating term
such as the cosine term in equation (3), although it slightly modifies the spin-wave velocity
vs. Then, as long as the trimerization is not so large (not so far from theJ̃2 = 1 line), the DD
chain model also exhibits the SF–dimer phase transition. The dimer configuration of the DD
chain model is easily found by tracing back the model mapping, which is shown in figure 5.
This ground-state wave function is also twofold degenerate with periodicityn = 6.

Here we summarize the critical properties of the SF–dimer transition using the effective
Hamiltonian (3) having the sine–Gordon form. The renormalization group calculation leads
to

dy0(L)

d lnL
= −yφ(L)2 dyφ(L)

d lnL
= −y0(L)yφ(L) (8)

whereL is an infrared cut-off and

y0 ∝ K − 1 (9)
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Figure 5. Dimer configurations in the ground state of the DD chain model. Two spins in an ellipse
form a singlet dimer pair.

The flow diagram of this is shown in figure 6, from which we see that the SF–dimer transition
is of the Berezinskii–Kosterlitz–Thouless type, as is well known. Since our model is isotropic,
the renormalized value ofK should be equal to unity, as already stated. Then, when the system
is in the SF state, the starting point of the renormalization lies on the SF–Néel boundary line
which flows into the origin whereK = 1, and moves along the route A→ B → C, asJ̃2

increases. Finally the SF–dimer transition takes place when the starting point arrives at the
origin. In the SF state,yφ(L) = −y0(L) in equation (8), resulting in

y0(L) = y
(0)
0

y
(0)
0 ln(L/L0) + 1

(10)

wherey(0)
0 is the bare value ofy0(L) andL0 is the cut-off length. Then, there appear logarithmic

corrections in various physical quantities at every point in the SF region in our isotropic (i.e.,
SU(2)-symmetric) model. At the SF–dimer critical point (origin O), on the other hand, the

y0

yφ

dimer

Neel

O
SF

A
BC

A’

B’C’

D’

Figure 6. The renormalization flow of the effective Hamiltonian (3). The phase boundaries are
shown by thick lines. In our isotropic case, the starting point of the renormalization lies on the
SF–Ńeel boundary line. As̃J2 increases, the starting point moves as A→ B → C → O. If the
system has theXXZ symmetry with1 ≡ J z/J⊥ < 1, the starting point of the renormalization
moves as A′ → B′ → C′ → D′.



10490 K Okamoto et al

logarithmic corrections vanish becausey0 = yφ = 0. This is very much peculiar to the
isotropic case. Since the SF–dimer transition occurs atyφ = 0, one may think that the SF–
dimer critical point can be obtained from equations (6) or (7). However, as stated, expressions
(6) and (7) are valid only in the lowest order of1, J̃NNN andJ̃3, although the critical properties
are well expressed by the effective Hamiltonian. Then numerical calculation is needed for
determining the SF–dimer critical point even in the case ofJ̃2 = 1.

If the model has theXXZ symmetry (no longer isotropic) with1 ≡ J z/J⊥ < 1, the
starting point of the renormalization moves as A′ → B′ → C′ → D′ as J̃2 increases. When
the starting point arrives at D′, the SF–dimer transition occurs. Then, in theXXZ-symmetric
case, the logarithmic corrections exist only at the SF–dimer critical point, and do not exist in
the SF region.

3. Numerical result

To confirm the consideration in section 2 and to obtain the ground-state phase diagram
on the J̃2–J̃3 plane, we performed the numerical diagonalization for finite systems for
N = 6, 12, 18, 24 by use of the Lanczos algorithm under periodic boundary conditions. It
is very easy to distinguish whether the ground state is ferrimagnetic (M = Ms/3) or M = 0
from the numerical data. However, it is difficult to detect the SF–dimer critical point from the
numerical data, because this transition is of the Berezinskii–Kosterlitz–Thouless type [9, 12]
with pathological critical behaviour. Okamoto and Nomura (ON) [12] developed a method by
use of which the SF–dimer critical point of theS = 1/2 NNN interaction model of figure 3
can be successfully determined from the numerical data for the energy gaps. Let us explain
this method, focusing on its physical meaning. In usual cases, the ground state is unique (not
twofold degenerate) in finite systems, except for the special cases such as the Ising model and
the Majumdar–Ghosh model [7, 8]. How is the twofold-degenerate ground state realized in
infinite systems? The energy gap of a low-lying excited state of finite systems rapidly decreases
as the system sizeN increases, and is finally degenerate to the ground state asN → ∞. Then
the linear combination of the ground state and the above-mentioned excited state results in the
twofold-degenerate ground state of the infinite systems. In our case, the ground state of finite
systems has the propertyStot = 0 as long as it lies in theM = 0 subspace (i.e., except for
the ferrimagnetic case). The twofold-degenerate dimer state of infinite systems also has the
propertyStot = 0. Then the above-mentioned excited state should also haveStot = 0, because
of the law of the addition of the angular momentum. Then we can conclude that the lowest
excitation in finite systems hasStot = 0 in the dimer region. In the SF region, on the other hand,
the lowest excitation should be of the spin-wave type withSz

tot = ±1 (the one-magnon state).
In the present case, the excitation with the same energy exists in theSz

tot = 0 subspace due
to the isotropic nature. This means that the system has threefold-degenerate lowest excitation
with Stot = 1, when it lies in the SF region.

From the above physical consideration, we can write down the following criteria:

1Ess(N) < 1Est(N) ⇐⇒ dimer state

1Ess(N) > 1Est(N) ⇐⇒ spin-fluid state
(11)

where1Ess(N) and1Est(N) are the singlet–singlet energy gap and singlet–triplet energy gap
for a finite-size system withN spins, defined by

1Ess(N) ≡ E1(N, S(tot) = 0) − Eg(N) (12)

1Ess(N) ≡ E0(N, S(tot) = 1) − Eg(N) (13)
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respectively. HereE0(N, S(tot)) andE1(N, S(tot)) are the lowest and second-lowest energies
in the subspace withS(tot) = 0, respectively, andEg = E0(S

(tot) = 0). These criteria can be
obtained also by use of the effective-Hamiltonian representation, the renormalization group
method and the conformal field theory [12,14,15].

Figure 7 shows the crossing betweenStot = 0 andStot = 1 excitations whenJ̃2 = 0.8
andN = 18. By use of the interpolation, we see that the crossing point isJ̃

(cr)
3 (N = 18) =

0.375 263. We can obtain the SF–dimer critical point of the infinite system by extrapolating
J̃

(cr)
3 (N) to N → ∞. The finite-size dependence ofJ̃

(cr)
3 (N) has the form

J̃
(cr)
3 (N) = J̃

(cr)
3 (∞) + (constant/N2) (14)

due to the existence of the irrelevant fields, as was discussed in [12,14,15]. Figure 8 shows the
extrapolation ofJ̃ (cr)

3 (N) toN → ∞ in the case of̃J2 = 0.8, resulting inJ̃ cr
3 = 0.352±0.001.

By sweeping parameters, we finally obtain the phase diagram on theJ̃2–J̃3 plane. The
result is shown in figure 9. We note that the point(J̃2, J̃3) is equivalent to the point(J̃2/J̃3, 1/J̃3)

on interchanging the role ofJ1 andJ3, as already stated in section 1.

0.3 0.4 0.5
3

4

5

6

7

J3

N
 ∆

E
(N

) ∆Est(N) 

∆Ess(N) 

J3
 (cr)

 = 0.375263

~

~

J2 = 0.8
~

N =18

Figure 7. Level crossing between1Ess(N) and1Ess(N) whenJ̃2 = 0.8 andN = 18. From the
crossing point, we obtaiñJ (cr)

3 (N = 18) = 0.375 263.

0 0.01
0.35

0.36

0.37

J 3
(c

r)

1/N2

J 3
(cr) = 0.352 +– 0.001

0.38

~

J 2 = 0.8
~

~

Figure 8. The extrapolation ofJ̃ (cr)
3 to N → ∞ in the J̃2 = 0.8 case. From this, we see that

J̃
(cr)
3 = 0.352± 0.001.
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0
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~

~
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0.0

0.5

1.0
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dimer

SF

J 3
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~

~
Figure 9. The phase diagram of the DD chain model. The estimated errors in the critical values
are less than 0.001. ThẽJ3 = 1 case is reduced to the model of Takanoet al (see section 4).

4. Discussion

In section 2, we have stated that the ground-state quantum phase transition of the DD chain
model (the present model) has the same universality class as that of the NNN model (figure 3).
We have confirmed this analytically by use of the effective-Hamiltonian representation. Here
we also confirm this by a numerical method.

Let us consider the model of figure 10 which interpolates between the DD chain model
with J̃2 = 1 (figure 2) and the NNN interaction model (figure 3). WhenJ4/J3 = 0 the
interpolation model is reduced to the DD chain model withJ̃2 = 1, and whenJ4/J3 = 1 to
the NNN interaction model. Figure 11 shows the level crossings between1st(N) and1ss(N)

for the J4/J3 = 0 andJ4/J3 = 1 cases. The behaviour of the level crossing is essentially
the same when the parameterJ4/J3 runs fromJ4/J3 = 0 to J4/J3 = 1, as can be seen from
figure 11. Furthermore, any other excitations cross them betweenJ4/J3 = 0 to J4/J3 = 1.
Figure 12 shows the SF–dimer critical pointJ cr

3 of the interpolation model, in which the critical
point smoothly changes. Thus we can safely conclude that the ground-state quantum phase
transition of the DD chain model (the present model) has the same universality class as that of
the NNN interaction model (figure 3). The DD chain model withJ̃2 = 1 is obtained from the
NNN interaction model by removing one NNN interaction in every three NNN interactions,
as already stated. Instead of removal, a similar (but not exact) effect may be realized by
decreasing the strength of the NNN interaction to 2/3 of the original strength. If this is the
case, the SF–dimer critical point of the DD chain model withJ̃2 = 1 is 3/2 of that of the NNN

J1

J3 J4

Figure 10. The model interpolating between the DD chain model withJ̃2 = 1 and the NNN
interaction model. Solid lines denoteJ1, dotted linesJ3 and dot–dashed linesJ4.
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0.2 0.3 0.4

4

2

6

4

N
 ∆

E
(N

)

J3
~

2

J4/J3 = 0

J4/J3 = 1

Figure 11. Level crossing of the interpolation model whenJ4/J3 = 0 andJ4/J3 = 1 for N = 18.
Closed circles and squares represent1st(N), and open circles and squares1ss(N).

0 0.5 1
0.2

0.3

0.4

J4 / J3

J 3
(c

r)

DD NNN

SF

dimer~

Figure 12. The SF–dimer critical points of the model interpolating between the DD chain model
with J̃2 = 1 and the NNN interaction model.

interaction model, which results iñJ (cr)
3 = (3/2) × 0.2411 ' 0.36. This semiqualitatively

explains our numerical result̃J (cr)
3 = 0.354± 0.001 whenJ̃2 = 1. This fact also appears in

equations (6) and (7).
Takano, Kubo and Sakamoto (TKS) [6] investigated theJ3 = J1 case of the present

DD chain model (see figure 13(a)). They concluded that the ground state of their model is
composed of three phases. The ferrimagnetic phase (M = Ms/3) appears wheñJ2 < 0.909.
In the tetramer–dimer (TD) phase, which appears when 0.909< J̃2 < 2, the state is exactly the
regular array of tetramers and dimers as shown in figure 13(b). Figure 13(c) shows the dimer–
monomer (DM) state, appearing whenJ̃2 > 2, which is composed of the regular array of singlet
dimers and free spins. Because of the free spins, the DM state is macroscopically degenerate.
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(a)

(b)

(c)

Figure 13. (a) The model of Takano, Kubo and Sakamoto. (b) The tetramer–dimer (TD) state.
The rectangles represent tetramers and the ellipses singlet dimers. (c) The dimer–monomer (DM)
state.

Let us discuss the relation between our model and TKS’s model. In the DM state of
TKS’s model, the monomers are completely free but this is very much peculiar to this model.
In our model, since the symmetry of a diamond is broken becauseJ̃3 6= 1, the monomer is no
longer free and has an effective interaction between neighbouring monomers through the dimer
between them. Therefore the DM state of TKS’s model is smoothly connected to the spin-fluid
state of our model, as can be seen in figure 9. The tetramer in the TD state is also special to
TKS’s model. When the symmetry of the diamond is broken, the tetramer is decomposed into
two dimers existing on stronger bonds, as is shown in figure 5. Then the TD state of TKS’s
model is a special case of the dimer state of our DD chain model. Thus the physical pictures
of our model and TKS’s model are consistent with each other.

We can confirm the reliability of our numerical results by checking the properties of
excitations. At the SF–dimer critical point, the cosine term of the effective Hamiltonian
(3) vanishes and the relation1Ess(N) = 1Est(N) holds, as discussed by Okamoto and
Nomura [12,14,15]. Then the system is purely Gaussian and has low-lying excitation energies
proportional to 1/N in finite systems. The lowest order correction to 1/N may be of 1/N3 form.
This correction comes from the band curvature and the wavenumber dependence of the coupling
constant of the interaction between Jordan–Wigner fermions, which was neglected in the course
of deriving the effective Hamiltonian. Figure 14 shows the 1/N2 dependence ofN 1E(N) at
J̃2 = 1.2 andJ̃3 = 0.39, which is the SF–dimer critical point where1Ess(∞) = 1Est(∞).
As can be seen from figure 14, the size dependence of the lowest excitation is well expressed
as

N 1E(N) = a + (b/N2) (15)

which is consistent with the above-mentioned discussion. The quantitya is related to the
spin-wave velocity as

a = 2πvsx (16)
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wherex is the scaling dimension of this excitation, which is equal to 1/2 at the critical
point [12,14,15]. Sincea = 3.851± 0.001 in the case of figure 14, we obtain

vs = 1.226± 0.001. (17)

0 0.01
1/N2

N
∆E

(N
)

J2 = 1.2

J3 = 0.39

~

~

3.85

3.90

Figure 14. The system-size dependence of the scaled excitation gapN 1E at the SF–dimer critical
point.

The system-size dependence of the ground-state energy also provides us with useful
information. Under periodic boundary conditions, it is written as [16,17]

Eg(N)

N
= εg(∞) − πvsc

6N2
+ · · · (18)

whereEg(N) is the ground-state energy of theN -spin systems,εg(∞) the ground-state energy
of the infinite system per spin,vs the spin-wave velocity andc the conformal charge which is
equal to unity in our universality class. Figure 15 shows the system-size dependence of the
ground-state energy in the case ofJ̃2 = 1.2 andJ̃3 = 0.39. From the slope of the line, we
obtain

vs = 1.23± 0.01 (19)

0 0.01

–0.430

1/N2

E
g(

N
) 

/ N

J2 = 1.2

J3 = 0.39

~

~

–0.425

–0.435

Figure 15. The system-size dependence of the ground-state energyEg(N) on the SF–dimer critical
point.
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which agrees well with equation (17). The fact that the values ofvs given by equations (17)
and (19) agree within the numerical error justifies our numerical analysis.

The spin-wave velocityvs can also be obtained from the lowest excitation havingSz
tot = 0

andk = 2π/N from

vs = lim
N→∞

N 1E(N, Sz
tot = 0, k = 2π/N)

2π
. (20)

We note that this formula is free from logarithmic corrections even in the SF region [15].
Figure 16 shows this extrapolation procedure, which leads tovs = 1.228± 0.001. This is also
consistent with equation (17) and equation (19).

0 0.01
7

8

J2 = 1.2

1/N 2

N
∆E

(N
)

J3
(cr) = 0.39

~

~

Figure 16. The extrapolation procedure for equation (20). From the intersection, we obtain
vs = 1.228± 0.001.

Let us discuss the logarithmic corrections in the SF region. As stated in section 2, there
appear logarithmic corrections in various physical quantities when the system is in the SF
region. This is very much peculiar to our isotropic case. In the following we check this point
numerically. The singlet–singlet gap and the singlet–triplet gap are expressed as

1Ess(N) = 2πvsxss

N
1Est(N) = 2πvsxst

N
(21)

respectively, wherexss andxst are the scaling dimensions:

xss = 1

2

(
1 +

3

2
y0(N)

)
xst = 1

2

(
1 − 1

2
y0(N)

)
(22)

with y0(N) given in equation (10). It is difficult to directly detect the logarithmic dependence
in equations (21) and (22) from the numerical data for1Ess(N) and1Est(N). Because the
logarithmic corrections are very slowly varying with respect to the system sizeN , its effects
are actually observed as the change in the spin-wave velocityvs between1Ess and1Est. As
an example, let us take thẽJ2 = 1.2 andJ̃3 = 0.35 point which lies in the SF region. In fact,
as shown in figure 17, the spin-wave velocities are estimated to bevs = 1.362± 0.001 and
vs = 1.248± 0.001 from1Ess and1Est, respectively. Okamoto and Nomura [12, 14, 15]
used the ‘averaged excitation’

1Eave(N) = 1

4
{1Ess(N) + 31Est(N)} (23)

in which the lowest-order logarithmic corrections vanish, as can be seen from equation (22).
From figure 17 we obtainvs = 1.277± 0.001 by use of1Eave. When we calculate the
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0 0.01

4.0

4.2

4.4

1/N2

N
∆E

(N
)

∆Ess

∆Est

∆Eave

3.8

Figure 17. The behaviour of1Ess, 1Est and1Eave at the point(J̃2, J̃3) = (1.2, 0.35) in the SF
region. From the intersection of the1Eave line, we obtainvs = 1.277± 0.001. The apparent
spin-wave velocities arevs = 1.362± 0.001 derived from1Ess andvs = 1.248± 0.001 derived
from 1Est.

spin-wave velocity through the formula (20), we obtainvs = 1.277± 0.001, which shows
very good agreement with that derived using1Eave. We note that there is no logarithmic
correction in formula (20), as already stated. Thus our numerical analysis is consistent with
our consideration in section 2 with respect to the logarithmic correction, although we could
not directly observe its existence. It may need systems with several thousand (or more) spins
to directly observe the contribution of the logarithmic corrections.

In summary, we have explained that the frustration leads to the non-magnetic ground state
in our DD chain model by use of an analytical method, physical consideration and a numerical
method. We have also obtained the phase diagram on theJ̃2–J̃3 plane numerically.
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